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Lattices in a quadratic space
Slight shift in perspective: consider lattices in a (fixed) quadratic
space.

Let V be a Q-vector space with dimQ V = n.
Let Q : V → Q be a positive definite quadratic form. Write
T : V × V → Q for the associated bilinear form, defined by
T (x , y) := Q(x + y)− Q(x)− Q(y) for x , y ∈ V .

Let Λ < V be a (full) lattice, the Z-span of a basis for V . Suppose
that Λ is integral, i.e., Q(Λ) ⊆ Z.

We represent a lattice in bits by a basis Λ = Ze1 + · · ·+ Zen; we
obtain a quadratic form

QΛ(x) = Q(x1e1 + · · ·+ xnen) ∈ Z[x1, . . . , xn]

and vice versa. Define

disc(Λ) :=
det(T (ei , ej))i ,j

2n mod 2 ∈ Z>0.



Isometry classes

We define the orthogonal group

O(V ) := {g ∈ GL(V ) : Q(gx) = Q(x) for all x ∈ V }
O(Λ) := {g ∈ O(V ) : gΛ = Λ}.

We have # O(Λ) <∞.

Lattices Λ,Π ⊂ V are isometric, written Λ ' Π, if there exists
g ∈ O(V ) such that gΛ = Π.

Same with isometric over Qp, with gp ∈ O(V ⊗Qp) for a prime p.

The genus of Λ is

Gen(Λ) := {Π < V : Λp ' Πp for all p}.

The class set Cl(Λ) := Gen(Λ)/' is the set of (global) isometry
classes in Gen(Λ). By the geometry of numbers, we have
# Cl(Λ) <∞.



Kneser’s p-neighbors

Kneser’s theory of p-neighbors (1957) gives an effective method to
compute the class set. It will also give us a Hecke action!

Let p - disc(Λ) be prime; p = 2 is OK.

We say that a lattice Π < V is a p-neighbor of Λ, and write
Π ∼p Λ, if Π is integral and

[Λ : Λ ∩ Π] = [Π : Λ ∩ Π] = p.

If Λ ∼p Π, then:

I disc(Λ) = disc(Π),
I Π ∈ Gen(Λ).



Explicit neighbors
Let H : Q2 → Q denote the hyperbolic plane defined by
H(x , y) = xy .

I Π ∼p Λ if and only if Λq = Πq for all q 6= p, and there exists a
splitting

Λp = (Zpe1 ⊕ Zpe2)� Λ′p ' Hp � Λ′p

such that
Πp = Zp( 1

p e1) + Zp(pe2)� Λ′p.

I Π ∼p Λ if and only if there exists v ∈ Λ such that Q(v) ≡ 0
(mod 2p2) and

Π = (p−1v)Z + {w ∈ Λ : T (v ,w) ∈ pZ}.

The line spanned by v uniquely determines Π, so there are as
many p-neighbors as their are isotropic Zp-lines in Λp.



Computing p-neighbors

The number of p-neighbors is O(pm) where m is the Witt index of
Λ/pΛ over Fp, i.e., the maximum dimension of a totally isotropic
Fp-subspace. We have n = 2m, 2m + 1, 2m + 2. If n = 3, then the
number of p-neighbors is p + 1.

The set of p-neighbors can be computed in time O(pm+εHn(‖Λ‖))
where ‖Λ‖ is the bit size and Hn is a polynomial depending on n
(the bit operations in computing a Hermite normal form).



All classes are neighbors

There is an effectively computable finite set S of primes such that
every [Λ′] ∈ Cl(Λ) is an iterated S-neighbor

Λ ∼p1 Λ1 ∼p2 · · · ∼pr Λr ' Λ′

with pi ∈ S .

Typically (when there is only one spinor genus in the genus) we
may take S = {p} for any p - disc(Λ).



Example

Let Λ = Z3 = Ze1 + Ze2 + Ze3 ⊂ Q3 have the quadratic form

QΛ(x , y , z) = x2 + y2 + 3z2 + xz

and bilinear form given by

(T (ei , ej))i ,j =

2 0 1
0 2 0
1 0 6

 .

Thus disc(QΛ) = 11. We have # Cl(Λ) = 2, with the nontrivial
class represented by the 3-neighbor

Λ′ = Ze1 + 3Ze2 + 1
3Z(e1 + 2e2 + e3)

with corresponding quadratic form

QΛ′(x , y , z) = x2 + 9y2 + z2 + 4yz + xz .



Hecke action
The space of orthogonal modular forms for Λ (with trivial
weight) is

M(O(Λ)) := Map(Cl(Λ),C).

In the basis of characteristic functions for Λ we have
M(O(Λ)) ' Ch where h = # Cl(Λ).

For p - disc(Λ), define the Hecke operator

Tp : M(O(Λ))→ M(O(Λ))

f 7→ Tp(f )

Tp(f )([Λ′]) :=
∑

Π′∼p Λ′

f ([Π′]).

The operators Tp commute and are self-adjoint with respect to a
natural inner product. So there is a basis of simultaneous
eigenvectors, called eigenforms.

This is case of the orthogonal group for the theory of algebraic
modular forms (Gross 1999).



Example
In the running example with discriminant 11, we compute

[T2] =

(
1 2
3 0

)
, [T3] =

(
2 2
3 1

)
, [T5] =

(
4 2
3 3

)
, . . . .

These can also be thought of as adjacency matrices for the
p-neighbor graph.

We find eigenvectors e =

(
1
1

)
, f =

(
2
−3

)
∈ M(O(Λ)). The

eigenvector e is an Eisenstein series with Tp(e) = (p + 1)e. We
have Tp(f ) = apf with

a2 = −2, a3 = −1, a5 = 1, . . .

We match it with the classical modular form
∞∑
n=1

anq
n =

∞∏
n=1

(1−qn)2(1−q11n)2 = q−2q2−q3+. . . ∈ S2(Γ0(11)).

The Atkin–Lehner involution z 7→ −1
11z

acts on f (z) dz with
eigenvalue w11 = −a11 = −1.



Quick review of modular forms

Let N ∈ Z>0. A modular form of weight k ∈ 2Z≥0 and level N is
a holomorphic function f : H → C such that

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all
(
a b
c d

)
∈ SL2(Z) with N | c and such that f is holomorphic

at the cusps. We accordingly write f ∈ Mk(Γ0(N)).

We further say f is a cusp form if f vanishes at the cusps. There
are several maps Mk(Γ0(M))→ Mk(Γ0(N)) for M | N, and we say
f is new if it is not in the span of the images of these maps.



Computing the Hecke action

To compute the matrix representing the Hecke operator, we need
to identify the isometry classes of the p-neighbors of a lattice.

This can be accomplished on lattices using an algorithm of
Plesken–Souveignier: match up short vectors and use lots of tricks
to compute an isometry or rule it out as early as possible. This is
very fast in practice and in fixed dimension theoretically efficient.

Theorem (Haviv–Regev 2014)

There exists a deterministic algorithm that,
given as input lattices Λ,Λ′ < V ,
computes as output all g ∈ O(V ) such that gΛ = Λ′

using nO(n)sO(1) bit operations and space sO(1), where s is the
input size.

In our setting, we need only one isometry g ∈ O(V ).



Hashing isometry classes
How efficiently (in theory, in practice) can the isometry class of a
lattice be identified? Is there an efficiently computable “hash
function” on Gen(Λ) that is well-defined on Cl(Λ)?

If so, we do not need to do O(h) isometry tests!

Example answer over Q in small dimension: use reduction theory.
For example, if n = 3 there is explicit reduction theory of integral
ternary quadratic forms due to Eisenstein. The result is a unique
reduced form, so that isometry testing is replaced by table lookup.

More generally, use Minkowski reduction or a Voronoi region?

Or use number of short vectors? With action of small
automorphisms? Theta series? Use the duals? Can you leverage
the fact that Λ ∼p Π agree on a large sublattice? . . .

(There is an idea of using almost autometries in the Ph.D. thesis of
Daniel Kim Murphy to minimize isometry tests.)

We would like this also for lattices over rings of integers.



Classical modular forms

Let S(O(Λ)) ⊂ M(O(Λ)) be the orthogonal complement of the
constant functions.

Theorem (Birch 1991, Hein 2016)

Suppose n = 3 and N = disc(Λ) is squarefree. Let εp ∈ {±1} be
the p-Witt invariant for p | N and let D =

∏
p:εp=−1 p. Then there

is a Hecke-equivariant inclusion

S(O(Λ)) ↪→ S2(Γ0(N))

whose image is

S2(Γ0(N);D-new;w = ε) :=

{f ∈ S2(Γ0(N)) : f is new at all p | D and Wpf = εpf for all p | N}.



Computing classical modular forms

Theorem (Hein–Tornaría–V)

There exists an explicit, deterministic algorithm that, given input

a weight k ∈ 2Z>0,
a factored nonsquare level N =

∏
i p

ei
i ,

D |
∏

2-ei pi with an odd number of factors,
and ε ∈ {±1}r ,

computes as output the space Sk(Γ0(N);D-new;w = ε) as a Hecke
module.

After precomputation steps (hard to analyze, instantaneous in
practice), the running time of the algorithm to compute Tp is
Õ(pd), where

d = dimS(O(Λ), ρ) = dimSk(Γ0(N);D-new;w = ε) = O(2−rkN).



Computational results

For level N = 1062347 = 11 · 13 · 17 · 19 · 23 and D = N (so all
forms are new), we take

Q(x , y , z) = x2 + 187y2 + 1467z2 − 187xz

and have # Cl(Λ) = 2016.

Given Q, we can compute [T2], [T3], [T5], [T7] for all signs (giving
all newforms) in 4 seconds on a standard desktop machine. Then 1
minute of linear algebra computing kernels with sparse matrices in
Magma gives that there are exactly 5 elliptic curves with conductor
N.

This isn’t a “generic” level! That being said, the same computation
with modular symbols in Magma crashed after consuming all 24 GB
of available memory.



Examples in higher rank, applications

The space S(O(Λ)) with n = 4 computes certain Hilbert modular
forms over real quadratic fields.

For n = 5, we find Siegel paramodular forms. For example, with
N = 61 we compute Euler factors for p < 100 giving enough terms
of the degree 4 L-series to verify the functional equation.
Conjecturally, this is attached to a Calabi–Yau threefold!

For large n but discriminant 1, Chenevier–Lannes have many
results. For example, # Cl(E8 � E8) = 2 and

Tp = c16(p) + (1 + p + p2 + p3)
1 + p11 − τ(p)

691

(
−405 286
405 −286

)
where

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.



Conclusion

I Isometry classes of lattices with the p-neighbor relation
compute spaces of orthogonal modular forms.

I The main workhorse is efficiently identifying isometry classes
of p-neighbors. Can these classes be hashed efficiently?

I For n = 3 (ternary quadratic forms), orthogonal modular forms
compute classical modular forms; with the right weight
module, we can carve out desirable subspaces (new,
Atkin–Lehner signs) and this implementation is very fast!

I More generally, we can consider other definite forms of
classical groups (algebraic modular forms), including unitary
and symplectic groups, over totally real fields.

I For large n, this approach allows us to peer deeply into the
world of automorphic forms.

Thank you for your attention!


